Récupérer les valeurs d'un formulaire

Quand I'un de vos visiteurs entre les informations dans un formulaire, celle—ci sont récupérées sous forme de variables.
Le nom de ces variables dépend de la méthode d'envoi du formulaire.

Comme dans notre exemple suivant la méthode d'envoi est POST, il faut mettre comme nom $_POST['nom_du_champ'].
Pour les anciens qui exploitaient les variables de facon $nom_du_champ au lieu de $_POST['nom_du_champ'], je conseille de lire de
toute urgence_le tutoriel de flyingcow sur les variables globales a OFF et surtout d'arréter de coder ainsi.

Cette variable contient ce qu'a entré le visiteur dans le champ, oops :). Allez, un exemple me parait plus simple, ci-dessous le
name="nom" devient $_POST['nom'] et name="prenom" devient $_POST['prenom’, il ne reste plus qu'a faire un print() des
variables et le tour est joué !

Pour simplifier le nom des variables, dans notre exemple, on fait $nom = $_POST['nom’]

et $prenom = $_POST['prenom’] pour assigner la valeur de la variable $_POST['prenom’] a $prenom et idem pour $_POST['nom]
(attention un nom de variable ne doit pas contenir d'espace et ne doit pas commencer par un chiffre alors n'en mettez pas dans vos nom de champ).

<html><body>
<form method="post" action="verif.php">
Nom : <input type="text" name="nom"
size="12">
 Nom:
Prénom : <input type="text" Prénom:
name="prenom" size="12">
<input type="submit" value="OK">
</form></body></html>

<?php

$prenom = $_POST[prenomT;

$nom = $_POST['nom7; Bonjour Thaal Rasha
print("<center>Bonjour $prenom $nom</center>");

?>

Il va bien sOr maintenant falloir contrdler les informations que rentre le visiteur pour éviter au maximum les erreurs. La premiére fonction
gue nous utiliserons est empty(), qui permet de contrdler si un champs est vide. Ensuite nous allons contréler que $_POST['url’]
commence bien par http:// & I'aide des deux fonctions strtolower() et substr().

<html><body>
<form method="post" action="verif.php">
Titre : <input type="text" name="titre"
size="12">
 Titre:
URL : <input type="text" name="url" URL:
size="12" value="http://">

<input type="submit" value="OK">
</form></body></html>

<?php Erreur n°1 :
$titre = $_POST[titre'];
$Surl =$_POST['url];

Le 'Titre' est vide !

|{f(empty($t|tre)) Erreur n°2 : L'URL doit commencer par http://
print("<center>Le 'Titre" est Sipas derreur - phpdebutant ;http://www.phpdebutant.org

vide !</center>");

01/02/06

1/3

http://www.phpdebutant.org

exit();
}
/[vérification du début de I'url
$verif_url = strtolower($url);
$verif_url = substr("$verif_url", 0, 7);
/I on verifie les 7 premiers caracteres
if ($verif_url'="http://")

{
print("L'URL doit commencer par
http://");

exit();

}
else
{
print("$titre :

$url");
}
>

Avec cet exemple nous commencons a attaquer les conditions, c'est un aspect primordial dans tous les langages. La premiére
vérification porte sur le champ 'titre’, la fonction empty() permet de contréler si celui—ci est vide ou non. Ce qui nous donne :

o if(empty($titre)){ print("<center>Le 'Titre" est vide !</center>"); exit(); } : Si la variable $titre est vide alors j'affiche
le message : 'Le titre est vide' (placé entre accolades) et j'arréte I'exécution du reste du code avec la commande exit().
« Par contre si la variable n'est pas vide, I'exécution ne prend pas en compte ce qui se trouve entre accolades et continue.

La seconde vérification est plus fine puisqu'il s'agit de vérifier que les 7 premiers caractéres qui ont été entrés par le visiteur sont bien
http://. Pour commencer nous utilisons la fonction strtolower() qui permet de transformer tous les caractéres en minuscules (ex.
HTTP://www.MONSsite.CoM devient http://www.monsite.com). Puis a l'aide de la fonction substr(), nous sélectionnons les 7 premiers
caracteres (0 est toujours le premier caractere d'une chaine — le second chiffre ' 7' étant le nombre de caractéres a sélectionner), puis
nous les comparons a ce que nous avons dans notre condition if :

o if ($verif_url!'="http://"){ print("L'URL doit commencer par http://"); exit(); } : Si les 7 premiers caracteres sont différents (
signe: |=) de http://, alors on exécute ce qui ce trouve entre accolades (en I'occurrence on affiche un message d'erreur), puis
nous arrétons le reste du code avec la commande exit().

« Par contre si le résultat est correct, PHP ignore ce qui ce trouve entre accolades et exécute le reste du code.

Vous pourrez faire autant de tests que vous voudrez sur les champs, mais ne soyez pas trop draconien car les visiteurs n'aiment pas
trop que I'on empiéte sur leur liberté :). Les contrdles les plus fréquents s'effectuent sur les URL et email pour savoir si I'email comporte
bien un "@" et un point.

<html><body>
<form method="post" action="verif.php">
Votre email : <input type="text"
name="email" size="20">

<input type="submit" value="OK">
</form></body></html>

Votre email:

<?php Erreur n”1 : Votre email doit comporter un point !

$email = $_POST['email;
$point — strpos($emai|) Erreur n°2 : Votre email doit comporter un '@" !

$aroba = strpos($email,"@");

Sipas d'erreur : Votre email est : email@email.com

01/02/06 2/3

mailto:email@email.com

Comme son nom l'indique, la fonction strpos() retourne la position d'un caractére dans une chaine si celui—ci existe, autrement strpos()
retourne "rien”. C'est ce que nous utilisons pour savoir si les point et @ sont bien présents dans I'email.

Exemple : Si strpos() retourne "10" cela veut dire que le premier caractére recherché est placé juste aprés les 10 premiers caractéres
donc en 11e position dans la chaine, puisque vous devez toujours vous rappeler que php commence a compter a O et non pas 1.

www.phpdebutant.org © 2006 — L'équipe de phpDebutant

01/02/06 3/3

